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Abstract-The conventional cross sections of the brain, provided
by magnetic resonance imaging (MRI) scanners, comprise a
sparse dataset of 2-D gray-level images, that is neither capable
of representing the 3-D nature of the brain, nor differentiating
its various component parts in a convenient way. The target of
the developed work is to fuse more information from the
original MRI cross sections, which leads to building a 3-D
computerized color-coded model of the normal human brain.
The proposed model is beneficial in many areas like medical
training, radiation treatment, 3-D model matching, or volume
mensuration of brain component parts. This paper presents a
revision of  the different methods for building 3-D brain models,
along with their advantages and disadvantages. A proposed
method for building a 3-D brain model is then introduced. The
method consists of three stages: interpolation of the original
MRI slices, segmentation of the different brain tissues, and 3-D
volumetric reconstruction. The resultant model can be
geometrically transformed and arbitrarily dissected. The results
are shown throughout the paper. Finally, the conclusions drawn
from this work, as well as possible future extensions of the work,
are listed.
Keywords - 3-D volumetric modeling, brain atlas, image
segmentation, magnetic resonance imaging (MRI), slice
interpolation

I. INTRODUCTION

A truly 3-D feel of the brain cannot be obtained from the 2-D
cross sections provided by medical scanners. Although
radiologists are trained to reconstruct this picture in their
minds, this is of course a difficult task for the untrained eye.
So, it is of a great importance to construct a comprehensive
3-D brain atlas or model, which helps in describing the shape,
configuration, and layout of brain component parts.
Furthermore, for 3-D visualization of brain structures,
accurate volume mensuration, radiation treatment, or 3-D
model matching, a 3-D model representation of the normal
human brain is an essential. With a digital brain atlas, the
user is able to translate, rotate, scale, and even dissect the
brain model in 3-D. The user can also visualize a certain
structure from the point of view that best clarifies it. Interest
in constructing a 3-D human brain model has been the focus
of many researchers [1], [2], [3]. Besides, the manufacturing
of new brain-imaging scanners and the vast development of
computer systems combine together to start a revolution in
the brain-related field of research.

In section II, the various 3-D modeling methods are
reviewed. The proposed modeling method is introduced in
section III. Section IV shows the different output results
gained from this work. Finally, the conclusions and possible
future work extensions are listed in section V.

II. 3-D CONSTRUCTION AND MODELING METHODS

There are several possible approaches for building a 3-D
brain model. Some of these approaches include building a
mesh-based model, a contour-based model, or a 3-D
volumetric model.

Mesh-based models are concerned in extracting the iso-
surface volume of interest (VOI) using certain algorithms.
These algorithms use interpolative techniques, which assume
continuity and smooth gradient of voxel densities [4]. The
assumption clearly fails in the case of a color-coded volume.
A natural solution would be to convert the volume into a
binary volume, based on the index value of the structure of
interest, then to isolate the surface with a threshold value of
0.5. The authors in [5] used this method for building a 3-D
brain atlas. They had to use a convolution-like surface
reconstruction technique to smooth the original volume. The
immersion effect is a drawback of this method. It appears
between surfaces of adjacent structures, and produces
distorted and enlarged surfaces. So, this effect has to be
minimized. Examples of other drawbacks of the mesh-based
3-D modeling are that small structures are eliminated and the
resulting model is jagged.

The second approach for building a 3-D brain model is the
contour-based modeling, which connects the adjacent slices
forming a wireframe model. Such algorithms can be quite
simply implemented, and could be easily adjusted to the
color-coded images. The correlation technique is the
backbone of the contour-based modeling method. Several
landmarks in each slice have to be correlated and connected
to their counterparts in the next one using matching vectors.
The authors in [6] adopted this technique in their work. The
contour-based 3-D modeling incorporates the following
difficulties: anatomical correspondences between slices have
to be explicitly defined, cross-over connections have to be
eliminated, and the missing data between adjacent slices have
to be compensated. The matter gets worse when a landmark
is translated from one slice to the next one. Also, branching
objects cause great difficulties.

Three-dimensional volumetric modeling is the third
approach for building a 3-D brain model. In this method, a
pack of horizontal slices are put one on the top of another.
This method has many advantages. First, the generated
models are best suited for volume rendering techniques.
Second, the resultant model can be arbitrarily dissected
without any difficulty. Moreover, the images of a patient,
however they are acquired, can be easily registered to the
model. Because this approach alleviates the disadvantages of
the other ones, it is adopted in this work.
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III. THE PROPOSED MODELING METHOD

A volumetric method for building a 3-D model of the brain
is proposed. It is based on the following steps :

1st. Interpolation of the Original Magnetic Resonance
    Imaging (MRI) Slices

This step assists in building an isotropic 3-D space and in
representing the internal brain structure much more smoothly
and accurately. Because medical imaging systems collect
data slice by slice, the distance between adjacent image
elements within a slice is different from the spacing between
adjacent image elements in two neighboring slices. For
visualization, manipulation, and analysis of such anisotropic
data, they often need to be converted into data of isotropic
discretization. This conversion helps in visualizing the
imaged property of the structure of interest within any
selected plane of arbitrary orientation [7].

The trilinear method of interpolation proved to be a good
estimation method [8]. It is better than the nearest neighbor,
the averaging, or the linear interpolation methods, because it
uses more sample values to compute the estimate and because
the distance from each sample to the interpolation point is
taken into account. Higher-order interpolations than the
trilinear method may create inaccurate estimates because of
the assumed strict data variation among points [9]. Using the
kriging interpolation method with a small number of
neighborhoods produced interpolant value estimates close to
the trilinear method, and got the closest match to trilinear
with a neighborhood of eight voxels [8]. But it should be
noted that the trilinear method is much faster than the kriging
method.

In [8], the trilinear interpolation technique was applied to
each pair of consecutive slices in order to obtain the in-
between slice. An example of an estimated slice along with
its surrounding slices, from which the estimated slice was
obtained, are shown in Fig. 1. At the end of this stage, the
number of slices has been doubled. The interpolation
technique was then applied again, and finally, an isotropic
dataset was obtained. This final dataset was then  used in the
following segmentation and 3-D reconstruction stages. The
validation results were given in [8], which showed the
superiority of the adopted interpolation technique.

2nd. Segmentation of the Different Brain Tissues

This step makes the differentiation among brain tissues
very easy. Brain matters, as assessed by MRI, can generally
be categorized as white matter (WM), gray matter (GM), or
cerebrospinal fluid (CSF). Most brain structures are
anatomically defined by boundaries of these tissue classes.
So, a method to classify and segment tissues into these
categories is an important step in quantitative morphology of
the brain. An accurate classification and segmentation
technique may facilitate the detection of various pathological
conditions, 3-D visualization of brain matter, model
registration, radiotherapy treatment, and surgical planning
[10], [11].

It has been found that feed-forward artificial neural
network (ANN)-based classification and segmentation
methods generally perform better than other algorithms [10],
[11]. So, the advantages and capabilities of ANNs are the
motivations behind the usage of an ANN-based segmentation
technique in this work [12].

In [13], a three-layer feed-forward ANN is used to segment
the original MRI slices into WM, GM, and CSF. Fig. 2 shows
the ANN used. Firstly, a graphical user interface (GUI)
environment is designed to enable the acquirement of
characterizing pixels of each tissue type. This process is done
once and off-line. The next step is to use these pixels as the
training vectors of the ANN. The error back-propagation
training technique is used with the generalized delta rule for
learning. The presentation phase is then used to segment the
multispectral MRI slices. The presentation phase is applied to
each pixel of the slice in order to decide to which tissue it
belongs. The pixel is then given a specific color representing
this tissue. New color-coded images are created as shown in
Fig. 3. The learning error curve, the weight and bias values of
the ANN, and the validation results are found in [13].

Fig. 1.  The results of the interpolation stage. (a) The lower slice.
(b) The in-between estimated slice. (c) The upper slice.
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 Fig. 2. The proposed ANN used to segment the brain tissues.
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3rd. 3-D Volumetric Reconstruction

The steps of this stage can be summarized as follows:

1) The boundary (contour) of each image, like the image
shown in Fig. 3(c), is traced. Some points on the
contour are marked and used to build a spline that
represents the contour, as shown in Fig. 4(a).

2) The curve is then capped and extruded to give it a small
thickness as shown in Fig. 4(b).

3) The image in Fig. 3(c) is used to shade the slice obtained
in step 2. Fig. 5 shows a complete and a cut slices.

4) The previous steps are repeated for all the axial images.
The slices are put one on the top of another and then
linked together to form the volumetric model.

5) The model is Blinn-shaded using two light sources, one
is above and to the left of the scene, and the other is
below and to the right.

6) The scene is then rendered using the scan line and the z-
buffer algorithms. A thorough discussion of these
algorithms is found in [14].

IV. THE OUTPUT RESULTS

The following results are obtained:

 •  The model can be geometrically transformed, animated, and
even dissected. The results are obtained in various
projections, which are helpful in studying the internal brain
structure from different positions. This is done
interactively, which is a great advantage of the
computerized brain models.

 •  Several cuts are made in the model to see the internal
structures of the brain. Examples of these cuts are the
cylindrical and spherical cuts, shown in Fig. 6. Any other
dissection can be made. The resulted images can be used to
enhance the understanding of the brain anatomy or to help
brain surgeons in making their decisions.

 •  Sagittal, coronal, and tilted slices can be obtained from the
model without using the MRI scanner for an extra period of
time or exposing patients to extra rays, Fig. 7.

The output results of the volumetric modeling stage have
been validated by medical experts. They have been compared
to the brain anatomy in textbook atlases including the
Talairach-Tournoux atlas. The comparisons showed the
efficiency of the proposed work.

V. DISCUSSION

The following conclusions can be drawn from this work:

 •  The volumetric modeling method proved to be better than
other methods for building 3-D brain models.

 •  The proposed ANN-based segmentation method yields
better results and less error rates than conventional
methods. This is due to the various advantages and
capabilities afforded by ANNs.

 •  
 •  

(a) (b)  (c)
Fig. 3.   Output segmented slices representing different

axial cross-sections of the brain.

Fig. 4.  (a)  The contour of the slice. (b) The contour is given some depth
(a)    (b)

Fig. 5.  (a) Complete shaded slice. (b) Shaded slice with a cut.

 (a) (b)

(b)

Fig. 6.  The model is dissected arbitrarily to show the internal
brain structure. (a) Cylindrical cut. (b) Spherical cut.
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 •  Applying the interpolation technique, to get a densely-
packed dataset of brain cross sections, yields smoother and
more accurate results of the 3-D modeling stage.

 •  Multispectral MRI images are preferred to single-echo
ones, for the analysis of brain datasets, because
multispectral images provide more information at the voxel
site than single-echo images.

There are several directions to extend the proposed work :

 •  The cerebral cortex can be modeled and included in the
proposed model.

 •  The brain blood vessels and the basal ganglia can be
included in the proposed model.

 •  Functional images of the brain can be registered to the
proposed model.

 •  The proposed model can be used for studying the aging
factor and brain pathology development.
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Fig. 7. (a) Sagittal slice. (b) Coronal slice. (c) Sagitto-axial slice. (d) Corono-axial slice.
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